

Riyaz Ahuja

✉ riyaza@andrew.cmu.edu ☎ 404-719-1661 ⚡ riyazahuja.com ⚡ riyaz-ahuja ⚡ riyazahuja

Education

Carnegie Mellon University

M.S. Mathematics, B.S. Mathematics, B.S. Computer Science

Aug 2022 – May 2026

- GPA: 3.82/4.0
- 2025-2026 ACS Scholar (Top 40 seniors in the university)
- 2024-2025 Richard A. Moore Award Winner
- Dean's List with High Honors
- Mathematics Honors Program
- **Relevant Coursework:** Interactive Theorem Proving, Logic and Mechanized Reasoning, Differential Topology, Algebraic Geometry, Model Theory, Categorical Logic, Category Theory, Complex Analysis, Parallel Computer Architecture, Machine Learning

Research Experience

Cofounder & Chief Researcher

Stagira Labs

Pittsburgh, PA

May 2025 – Present

- Cofounded Stagira Labs to investigate multi-agent AI and game-theoretic dynamics in automated scientific discovery.
- Architected Agora, a decentralized marketplace where human and AI agents trade formal definitions, conjectures, and proofs as verifiable smart contracts within a shared Lean 4 library.
- Conducted experiments on miniCTX and related benchmarks, demonstrating that interacting populations of specialized agents (provers, verifiers, critics) outperform monolithic baselines under fixed compute budgets.

Researcher

Carnegie Mellon University

Pittsburgh, PA

May 2024 – Present

- Conducting research in automated theorem proving and neurosymbolic AI under Profs. Jeremy Avigad, Prasad Tetali, and Sean Welleck.
- Designed ImProver, an agentic framework utilizing a novel Chain-of-States technique and symbolic context retrieval to optimize proofs, achieving ~21% length reduction and ~9% declarativity gain (ICLR 2025).
- Developing ImProver², a pipeline training Small Language Models (SLMs) via bootstrapped reinforcement learning to iteratively self-improve on structural metrics (modularity, dependency) where human data is scarce.
- Built LeanM2, a type-consistent bridge handling complex types (e.g., nested polynomial quotient rings) to generate formally verified Gröbner basis witnesses, significantly outperforming **polyrith**.
- Initiated cLean, a GPU verification framework featuring a custom Lean elaborator that translates do-blocks into DeviceIR to prove functional correctness, race-freedom, and barrier-safety.
- Founded the first joint Stanford-CMU neural theorem proving lab, leading development on game-theoretic approaches to automated theorem discovery.

Professional Experience

Business Development Analyst

Expii

Pittsburgh, PA

May 2023 – Dec 2023

- Established strategic partnerships with educational institutions, nonprofits, and political figures to integrate the LIVE program into standard curricula across the US.
- Co-organized, marketed, and presented at 112 public events in 63 cities, driving a 3x growth in customer acquisition and generating over \$500,000 in revenue in three months.
- Collaborated with international NGOs to launch a Philippines office and expanded program adoption to top-tier schools in Saudi Arabia, India, Hong Kong, and Romania.

Software Engineer*Pittsburgh, PA*
Sept 2022 – May 2023

- Led a 15-person engineering and design team for the LIVE project, delivering a real-time P2P math education platform with near-zero marginal operating costs.
- Architected AWS infrastructure (DynamoDB, Lambda) to secure sensitive customer data, tripling development velocity and generating \$50,000+ in value via automated pipelines.
- Fine-tuned LLaMA and GPT models on mathematical corpora to automate content generation, producing over 15,000 USAMO-level competition problems with solutions.

Founder*Cleveland, OH*
*Dec 2020 – Aug 2022**The Purple Hand [Defunct]*

- Directed a team of 6 to deliver human trafficking awareness workshops, securing \$20,000 in funding as a registered 501(c)(3) nonprofit.
- Partnered with law enforcement and state task forces to provide career development resources and support systems for survivors.

Publications**ImProver: Agent-based Automated Proof Optimization***Oct 2024**Riyaz Ahuja, Jeremy Avigad, Prasad Tetali, Sean Welleck*

In Proceedings of the Thirteenth International Conference on Learning Representations (ICLR) pp. 29521–29543, 2025.

[10.48550/arXiv.2410.04753](https://arxiv.org/abs/2410.04753) ↗**Projects****cLean***Nov 2025-Present*

- Engineered a domain-specific language and transpiler in Lean 4 that utilizes macro expansion to convert functional Lean code into a semantic intermediary and compiles to PTX.
- Implemented a CPU simulator, GPU launcher and verification harness to prove functional correctness, race-freedom, and barrier-safety of GPU kernels, and execute them on GPU directly from Lean.

CohesiveGalois*Nov 2025-Present*

- Formalized a minimal 10-axiom system for cohesive ∞ -topoi and proved the logical independence of descent axioms and minimality of the axiom set.
- Constructed a counterexample showing the non-conservativity of the Shape functor, establishing that finite covers can arise from infinitesimal refinements.

ImProver²*Jun 2025-Present*

- Built a generalized neurosymbolic pipeline that bootstraps Small Language Models (SLMs) using iterative filtering and self-improvement.
- Bootstraps small language models via the RL pipeline to outperform much larger proprietary foundation models on research-level theorems by directly optimizing user-defined structural value functions (e.g., modularity) with a high degree of stability. To be submitted to ICML 2026.

LeanM2*Apr 2025*

- Developed the first type-consistent interface between Lean 4 and Macaulay2, handling noncomputable dependent types and nested rings.
- Created custom metavariable synthesis tactic for simplified and modular DSL generation.
- Automates Grobner basis ideal membership proofs by retrieving computation witnesses from M2 and reconstructing them as formally verified Lean certificates.

Keraunos*Jan 2024*

- Engineered an autonomous drone swarm capable of formation flight and dynamic target tracking using Arduino and custom flight controllers.
- Modified hardware for voltage rerouting to enable live video transmission; implemented stereoscopic trian-

gulation and YOLOv5 object detection for real-time depth perception and leader-follower navigation.

Whitney-Graustein Theorem

Dec 2023

- Complete formalization of the Whitney-Graustein theorem in Lean 4, classifying regular closed curves in the plane up to regular homotopy.
- Led the formalization of turning numbers and proving their invariance under regular homotopy.

Baire Category Theorem

Oct 2023

- Formalized the Baire Category Theorem for complete metric spaces in Lean 4, establishing that countable unions of nowhere dense sets have empty interior.
- Developed foundational topological definitions including meager sets, non-meager sets, and Baire spaces, now integrated into the library.

Orbisol

Sept 2023

- Developed a high-performance orbital debris tracking engine using C++ and OpenGL, integrating datasets from NASA, ESA, and NORAD.
- Implemented a custom octree spatial partitioning system to optimize collision risk calculations and rendering for thousands of tracked objects. (1st Place, CMUHacks 2023).

Technologies

Languages: Python, Lean, C++, C, Java, C#, JavaScript, Typescript, HTML/CSS, SML, Haskell, Rust, x86 Assembly, Verilog, OCaml, SQL

Technologies: ReactJS, NodeJS, NextJS, CUDA, cuDNN, AWS (S3, Dynamo/RDS, Lambda, EC2), Pytorch, Keras, Langchain/graphsmith, Macaulay2, Matlab, Mathematica, Firebase, MongoDB, Git

References

Dr. Jeremy Avigad: Professor of Philosophy and Mathematical Sciences, Director of the Hoskinson Center of Formal Mathematics (CMU)

✉ avigad@cmu.edu
📞 412-268-8568

Dr. Prasad Tetali: Professor of Mathematical Sciences, Department Head (CMU)

✉ ptetali@cmu.edu
📞 412-268-2545

Dr. Sean Welleck: Assistant Professor, Language Technologies Institute (CMU)

✉ swelleck@andrew.cmu.edu

Dr. Po-Shen Loh: Professor of Mathematical Sciences (CMU), CEO of Expii

✉ ploh@cmu.edu
📞 412-268-2548